std::construct_at() algorithm
- od C++20
// (1)
template< class T, class... Args >
constexpr T* construct_at( T* p, Args&&... args );
Creates a T
object initialized with arguments args...
at given address p
.
return ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
Except that construct_at
may be used in evaluation of constant expressions.
When construct_at
is called in the evaluation of some constant expression e
, the argument p
must point to either storage obtained by std::allocator<T>::allocate
or an object whose lifetime began within the evaluation of e
.
Participates in overload resolution only if ::new(std::declval<void*>()) T(std::declval<Args>()...)
is well-formed in unevaluated context.
Parameters
p | Pointer to the uninitialized storage on which a |
args.. | Args to initialize the object with. |
Return value
p
(none)
Complexity
O(1)
Exceptions
(none)
Possible implementation
ranges::construct_at(1)
struct construct_at_fn
{
template<class T, class...Args>
requires
requires (void* vp, Args&&... args)
{ ::new (vp) T(static_cast<Args&&>(args)...); }
constexpr T* operator()(T* p, Args&&... args) const
{
return std::construct_at(p, static_cast<Args&&>(args)...);
}
};
inline constexpr construct_at_fn construct_at{};
Notes
std::ranges::construct_at
behaves exactly same as std::construct_at
,
except that it is invisible to argument-dependent lookup.
Examples
#include <iostream>
#include <memory>
struct S
{
int x;
float y;
double z;
S(int x, float y, double z) : x{x}, y{y}, z{z} { std::cout << "S::S();\n"; }
~S() { std::cout << "S::~S();\n"; }
void print() const
{
std::cout << "S { x=" << x << "; y=" << y << "; z=" << z << "; };\n";
}
};
int main()
{
alignas(S) unsigned char buf[sizeof(S)];
S* ptr = std::ranges::construct_at(reinterpret_cast<S*>(buf), 42, 2.71828f, 3.1415);
ptr->print();
std::ranges::destroy_at(ptr);
}
S::S();
S { x=42; y=2.71828; z=3.1415; };
S::~S();
Hover to see the original license.