std::ranges::partition_point() algorithm
- od C++20
- Simplified
- Detailed
// (1)
constexpr I
partition_point( I first, S last, Pred pred, Proj proj = {} );
// (2)
constexpr ranges::borrowed_iterator_t<R>
partition_point( R&& r, Pred pred, Proj proj = {} );
The type of arguments are generic and have the following constraints:
I
-std::forward_iterator
S
-std::sentinel_for<I>
R
-std::ranges::forward_range
Pred
:- (1) -
std::indirect_unary_predicate<std::projected<I, Proj>>
- (2) -
std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>>
- (1) -
Proj
- (none)
The Proj
template argument has the following default type std::identity
for all overloads.
// (1)
template<
std::forward_iterator I,
std::sentinel_for<I> S,
class Proj = std::identity,
std::indirect_unary_predicate<std::projected<I, Proj>> Pred
>
constexpr I
partition_point( I first, S last, Pred pred, Proj proj = {} );
// (2)
template<
ranges::forward_range R,
class Proj = std::identity,
std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred
>
constexpr ranges::borrowed_iterator_t<R>
partition_point( R&& r, Pred pred, Proj proj = {} );
Examines the partitioned (as if by ranges::partition
) range [first
; last
) or r
and locates the end of the first partition, that is, the projected element that does not satisfy pred
or last if all projected elements satisfy pred
.
The function-like entities described on this page are niebloids.
Parameters
first last | The range of elements to examine. |
r | The range of elements to examine. |
pred | The predicate to apply to the projected elements. |
proj | The projection to apply to the elements. |
Return value
The iterator past the end of the first partition within [first
; last
) or the iterator equal to last
if all projected elements satisfy pred
.
Complexity
Given N
as ranges::distance(first, last)
:
Performs O(log(N)) applications of the predicate pred
and projection proj
.
However, if sentinels don't model std::sized_sentinel_for<I>
, the number of iterator increments is O(N).
Exceptions
(none)
Possible implementation
partition_point(1) and partition_point(2)
#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
auto print_seq = [](auto rem, auto first, auto last)
{
for (std::cout << rem; first != last; std::cout << *first++ << ' ') {}
std::cout << '\n';
};
int main()
{
std::array v {1, 2, 3, 4, 5, 6, 7, 8, 9};
auto is_even = [](int i) { return i % 2 == 0; };
std::ranges::partition(v, is_even);
print_seq("After partitioning, v: ", v.cbegin(), v.cend());
const auto pp = std::ranges::partition_point(v, is_even);
const auto i = std::ranges::distance(v.cbegin(), pp);
std::cout << "Partition point is at " << i << "; v[" << i << "] = " << *pp << '\n';
print_seq("First partition (all even elements): ", v.cbegin(), pp);
print_seq("Second partition (all odd elements): ", pp, v.cend());
}
Notes
This algorithm is a more general form of ranges::lower_bound
, which can be expressed in terms of ranges::partition_point
with the predicate [&](auto const& e) { return std::invoke(pred, e, value); });
.
Examples
#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
auto print_seq = [](auto rem, auto first, auto last)
{
for (std::cout << rem; first != last; std::cout << *first++ << ' ') {}
std::cout << '\n';
};
int main()
{
std::array v {1, 2, 3, 4, 5, 6, 7, 8, 9};
auto is_even = [](int i) { return i % 2 == 0; };
std::ranges::partition(v, is_even);
print_seq("After partitioning, v: ", v.cbegin(), v.cend());
const auto pp = std::ranges::partition_point(v, is_even);
const auto i = std::ranges::distance(v.cbegin(), pp);
std::cout << "Partition point is at " << i << "; v[" << i << "] = " << *pp << '\n';
print_seq("First partition (all even elements): ", v.cbegin(), pp);
print_seq("Second partition (all odd elements): ", pp, v.cend());
}
After partitioning, v: 2 4 6 8 5 3 7 1 9
Partition point is at 4; v[4] = 5
First partition (all even elements): 2 4 6 8
Second partition (all odd elements): 5 3 7 1 9
Hover to see the original license.