std::ranges::reverse_copy() algorithm
- od C++20
- Simplified
- Detailed
// (1)
constexpr reverse_copy_result<I, O>
reverse_copy( I first, S last, O result );
// (2)
constexpr reverse_copy_result<ranges::borrowed_iterator_t<R>, O>
reverse_copy( R&& r, O result );
The type of arguments are generic and have following constraints:
I
-std::bidirectional_iterator
S
-std::sentinel_for<I>
R
-ranges::bidirectional_range
O
-std::weakly_incrementable
Additionally, each overload has the following constraints:
- (1) -
std::indirectly_copyable<I, O>
- (2) -
std::indirectly_copyable<ranges::iterator_t<R>, O>
// (1)
template<
std::bidirectional_iterator I,
std::sentinel_for<I> S,
std::weakly_incrementable O
>
requires std::indirectly_copyable<I, O>
constexpr reverse_copy_result<I, O>
reverse_copy( I first, S last, O result );
// (2)
template<
ranges::bidirectional_range R,
std::weakly_incrementable O
>
requires std::indirectly_copyable<ranges::iterator_t<R>, O>
constexpr reverse_copy_result<ranges::borrowed_iterator_t<R>, O>
reverse_copy( R&& r, O result );
With the helper types defined as follows:
template< class I, class O >
using reverse_copy_result = ranges::in_out_result<I, O>;
-
(1) Given N as
ranges::distance(first, last)
:Copies the elements from the source range [
first
;last
) to the destination range [result
;result + N
), in such a way that the elements in the new range are in reverse order.Behaves as if by executing the assignment
*(result + N - 1 - i) = *(first + i)
once for each integeri
in [0
;N
). -
(2) Same as (1), but uses
r
as the source range, as if usingranges::begin(r)
asfirst
andranges::end(r)
aslast
.
The behavior is undefined
if the source and destination ranges overlap.The function-like entities described on this page are niebloids.
Parameters
first last | The range of elements to copy. |
r | The range of elements to copy. |
result | The beginning of the destination range. |
Return value
A value of type ranges::reverse_copy_result
initialized as follows:
{
last,
result + N
}
Where N is ranges::distance(first, last)
.
Complexity
Exactly ranges::distance(first, last)
assignments.
Exceptions
(none)
Possible implementation
reverse_copy(1)
struct reverse_copy_fn
{
template<std::bidirectional_iterator I, std::sentinel_for<I> S,
std::weakly_incrementable O>
requires std::indirectly_copyable<I, O>
constexpr ranges::reverse_copy_result<I, O>
operator()(I first, S last, O result) const
{
auto ret = ranges::next(first, last);
for (; last != first; *result = *--last, ++result);
return {std::move(ret), std::move(result)};
}
template<ranges::bidirectional_range R, std::weakly_incrementable O>
requires std::indirectly_copyable<ranges::iterator_t<R>, O>
constexpr ranges::reverse_copy_result<ranges::borrowed_iterator_t<R>, O>
operator()(R&& r, O result) const
{
return (*this)(ranges::begin(r), ranges::end(r), std::move(result));
}
};
inline constexpr reverse_copy_fn reverse_copy {};
Notes
Implementations (e.g. MSVC STL) may enable vectorization when the both iterator types satisfy LegacyContiguousIterator and have the same value type, and the value type is TriviallyCopyable.
Examples
#include <algorithm>
#include <iostream>
#include <string>
int main()
{
std::string x {"12345"}, y(x.size(), ' ');
std::cout << x << " → ";
std::ranges::reverse_copy(x.begin(), x.end(), y.begin());
std::cout << y << " → ";
std::ranges::reverse_copy(y, x.begin());
std::cout << x << '\n';
}
12345 → 54321 → 12345
Hover to see the original license.