std::ranges::rotate() algorithm
- od C++20
- Simplified
- Detailed
// (1)
constexpr ranges::subrange<I>
rotate( I first, I middle, S last );
// (2)
constexpr ranges::borrowed_subrange_t<R>
rotate( R&& r, ranges::iterator_t<R> middle );
The type of arguments are generic and have the following constraints:
I
-std::permutable
S
-std::sentinel_for<I>
R
-std::ranges::forward_range
Additionally, each overload has the following constraints:
- (2) -
std::permutable<ranges::iterator_t<R>>
// (1)
template< std::permutable I, std::sentinel_for<I> S >
constexpr ranges::subrange<I>
rotate( I first, I middle, S last );
// (2)
template< ranges::forward_range R >
requires std::permutable<ranges::iterator_t<R>>
constexpr ranges::borrowed_subrange_t<R>
rotate( R&& r, ranges::iterator_t<R> middle );
Reverses the order of elements.
- (1) Performs a left rotation on a range of elements. Specifically,
ranges::rotate
swaps the elements in the range [first
;last
) in such a way that the element*middle
becomes the first element of the new range and*(middle - 1)
becomes the last element.
The behavior is undefined
if [first
; last
) is not a valid range or middle
is not in [first
; last
).- ** (2)** Same as (1), but uses
r
as the range, as if usingranges::begin(r)
asfirst
andranges::end(r)
aslast
.
The function-like entities described on this page are niebloids.
Parameters
first last | The range of elements to rotate. |
r | The range of elements to rotate. |
middle | The iterator to the element that should appear at the beginning of the rotated range. |
Return value
{
new_first,
last
}
Where new_first
is ranges::next(first, ranges::distance(middle, last))
and designates a new location of the element pointed by first
.
Complexity
Linear at worst: ranges::distance(first, last)
swaps.
Exceptions
(none)
Possible implementation
rotate(1) and rotate(2)
struct rotate_fn
{
template<std::permutable I, std::sentinel_for<I> S>
constexpr ranges::subrange<I>
operator()(I first, I middle, S last) const
{
if (first == middle)
{
auto last_it = ranges::next(first, last);
return {last_it, last_it};
}
if (middle == last)
return {std::move(first), std::move(middle)};
if constexpr (std::bidirectional_iterator<I>)
{
ranges::reverse(first, middle);
auto last_it = ranges::next(first, last);
ranges::reverse(middle, last_it);
if constexpr (std::random_access_iterator<I>)
{
ranges::reverse(first, last_it);
return {first + (last_it - middle), std::move(last_it)};
}
else
{
auto mid_last = last_it;
do
{
ranges::iter_swap(first, --mid_last);
++first;
}
while (first != middle && mid_last != middle);
ranges::reverse(first, mid_last);
if (first == middle)
return {std::move(mid_last), std::move(last_it)};
else
return {std::move(first), std::move(last_it)};
}
}
else
{ // I is merely a forward_iterator
auto next_it = middle;
do
{ // rotate the first cycle
ranges::iter_swap(first, next_it);
++first;
++next_it;
if (first == middle)
middle = next_it;
}
while (next_it != last);
auto new_first = first;
while (middle != last)
{ // rotate subsequent cycles
next_it = middle;
do
{
ranges::iter_swap(first, next_it);
++first;
++next_it;
if (first == middle)
middle = next_it;
}
while (next_it != last);
}
return {std::move(new_first), std::move(middle)};
}
}
template<ranges::forward_range R>
requires std::permutable<ranges::iterator_t<R>>
constexpr ranges::borrowed_subrange_t<R>
operator()(R&& r, ranges::iterator_t<R> middle) const
{
return (*this)(ranges::begin(r), std::move(middle), ranges::end(r));
}
};
inline constexpr rotate_fn rotate {};
Notes
ranges::rotate
has better efficiency on common implementations if I models bidirectional_iterator
or (better) random_access_iterator
.
Implementations (e.g. MSVC STL) may enable vectorization when the iterator type models contiguous_iterator
and swapping its value type calls neither non-trivial special member function nor ADL-found swap.
Examples
ranges::rotate
is a common building block in many algorithms. This example demonstrates insertion sort.
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
int main()
{
std::string s(16, ' ');
for (int k {}; k != 5; ++k)
{
std::iota(s.begin(), s.end(), 'A');
std::ranges::rotate(s, s.begin() + k);
std::cout << "Rotate left (" << k << "): " << s << '\n';
}
std::cout << '\n';
for (int k {}; k != 5; ++k)
{
std::iota(s.begin(), s.end(), 'A');
std::ranges::rotate(s, s.end() - k);
std::cout << "Rotate right (" << k << "): " << s << '\n';
}
std::cout << "\nInsertion sort using `rotate`, step-by-step:\n";
s = {'2', '4', '2', '0', '5', '9', '7', '3', '7', '1'};
for (auto i = s.begin(); i != s.end(); ++i)
{
std::cout << "i = " << std::ranges::distance(s.begin(), i) << ": ";
std::ranges::rotate(std::ranges::upper_bound(s.begin(), i, *i), i, i + 1);
std::cout << s << '\n';
}
std::cout << (std::ranges::is_sorted(s) ? "Sorted!" : "Not sorted.") << '\n';
}
Rotate left (0): ABCDEFGHIJKLMNOP
Rotate left (1): BCDEFGHIJKLMNOPA
Rotate left (2): CDEFGHIJKLMNOPAB
Rotate left (3): DEFGHIJKLMNOPABC
Rotate left (4): EFGHIJKLMNOPABCD
Rotate right (0): ABCDEFGHIJKLMNOP
Rotate right (1): PABCDEFGHIJKLMNO
Rotate right (2): OPABCDEFGHIJKLMN
Rotate right (3): NOPABCDEFGHIJKLM
Rotate right (4): MNOPABCDEFGHIJKL
Insertion sort using `rotate`, step-by-step:
i = 0: 2420597371
i = 1: 2420597371
i = 2: 2240597371
i = 3: 0224597371
i = 4: 0224597371
i = 5: 0224597371
i = 6: 0224579371
i = 7: 0223457971
i = 8: 0223457791
i = 9: 0122345779
Sorted!
Hover to see the original license.