Floating-point literal
Floating-point literal defines a compile-time constant whose value is specified in the source file.
Syntax
1 | digit-sequence | decimal-exponent suffix | (optional) | | ||||||
2 | digit-sequence | . | decimal-exponent | (optional) | suffix | (optional) | | |||
3 | digit-sequence | (optional) | . | digit-sequence | decimal-exponent | (optional) | suffix | (optional) | | |
4 | 0x|0X | hex-digit-sequence | hex-exponent suffix | (optional) | (od C++17) | | ||||
5 | 0x|0X | hex-digit-sequence | . | hex-exponent suffix | (optional) | (od C++17) | | |||
6 | 0x|0X | hex-digit-sequence | (optional) | . | hex-digit-sequence | hex-exponent suffix | (optional) | (od C++17) | |
- digit-sequence representing a whole number without a decimal separator, in this case the exponent is not optional:
1e10
,1e-5L
. - digit-sequence representing a whole number with a decimal separator, in this case the exponent is optional:
1.
,1.e-2
. - digit-sequence representing a fractional number. The exponent is optional:
3.14
,.1f
,0.1e-1L
. - Hexadecimal digit-sequence representing a whole number without a radix separator. The exponent is never optional for hexadecimal floating-point literals:
0x1ffp10
,0X0p-1
. - Hexadecimal digit-sequence representing a whole number with a radix separator. The exponent is never optional for hexadecimal floating-point literals:
0x1.p0
,0xf.p-1
. - Hexadecimal digit-sequence representing a fractional number with a radix separator. The exponent is never optional for hexadecimal floating-point literals:
0x0.123p-1
,0xa.bp10l.
decimal-exponent has the form:
e | E | exponent-sign (optional) digit-sequence |
---|
hex-exponent has the form:
p | P | exponent-sign (optional) digit-sequence (od C++17) |
---|
exponent-sign, if present, is either +
or -
suffix, if present, is one of f, l, F, L, f16, f32, f64, f128, bf16, F16, F32, F64, F128, BF16 (od C++23). The suffix determines the type of the floating-point literal:
- (no suffix) defines
double
- f F defines
float
- l L defines
long double
- f16 F16 defines std::float16_t
- f32 F32 defines std::float32_t
- f64 F64 defines std::float64_t
- f128 F128 defines std::float128_t
- bf16 BF16 defines std::bfloat16_t
'
may be inserted between the digits as a separator; they are ignored when determining the value of the literal. (od C++14)
Explanation
Decimal scientific notation is used, meaning that the value of the floating-point literal is the significand multiplied by the number 10 raised to the power of decimal-exponent.
E.g. the mathematical meaning of 123e4
is 123×104.
If the floating literal begins with the character sequence 0x
or 0X
, the floating literal is a hexadecimal floating literal. Otherwise, it is a decimal floating literal.
For a hexadecimal floating literal, the significand is interpreted as a hexadecimal rational number, and the digit-sequence of the exponent is interpreted as the (decimal) integer power of 2 by which the significand has to be scaled.
double d = 0x1.4p3;// hex fraction 1.4 (decimal 1.25) scaled by 23, that is 10.0
Notes
The hexadecimal floating-point literals were not part of C++ until C++17, although they can be parsed and printed by the I/O functions since C++11: both C++ I/O streams when std::hexfloat is enabled and the C I/O streams: std::printf, std::scanf, etc. See std::strtof for the format description.
Feature-test macro | Value | Std | Comment |
---|---|---|---|
__cpp_hex_float | 201603L | (C++17) | Hexadecimal floating literals |
Example
#include <iomanip>
#include <iostream>
#include <limits>
#include <typeinfo>
#define OUT(x) '\n' << std::setw(16) << #x << x
int main()
{
std::cout
<< "Literal" "\t" "Printed value" << std::left
<< OUT( 58. ) // double
<< OUT( 4e2 ) // double
<< OUT( 123.456e-67 ) // double
<< OUT( 123.456e-67f ) // float, truncated to zero
<< OUT( .1E4f ) // float
<< OUT( 0x10.1p0 ) // double
<< OUT( 0x1p5 ) // double
<< OUT( 0x1e5 ) // integer literal, not floating-point
<< OUT( 3.14'15'92 ) // double, single quotes ignored (C++14)
<< OUT( 1.18e-4932l ) // long double
<< std::setprecision(39)
<< OUT( 3.4028234e38f ) // float
<< OUT( 3.4028234e38 ) // double
<< OUT( 3.4028234e38l ) // long double
<< '\n';
static_assert(3.4028234e38f == std::numeric_limits<float>::max());
static_assert(3.4028234e38f == // ends with 4
3.4028235e38f); // ends with 5
static_assert(3.4028234e38 != // ends with 4
3.4028235e38); // ends with 5
// Both floating-point constants below are 3.4028234e38
static_assert(3.4028234e38f != // a float (then promoted to double)
3.4028234e38); // a double
}
Literal Printed value
58. 58
4e2 400
123.456e-67 1.23456e-65
123.456e-67f 0
.1E4f 1000
0x10.1p0 16.0625
0x1p5 32
0x1e5 485
3.14'15'92 3.14159
1.18e-4932l 1.18e-4932
3.4028234e38f 340282346638528859811704183484516925440
3.4028234e38 340282339999999992395853996843190976512
3.4028234e38l 340282339999999999995912555211526242304
References
- C++23 standard (ISO/IEC 14882:2023):
- 5.13.4 Floating-point literals [lex.fcon]
- C++20 standard (ISO/IEC 14882:2020):
- 5.13.4 Floating-point literals [lex.fcon]
- C++17 standard (ISO/IEC 14882:2017):
- 5.13.4 Floating literals [lex.fcon]
- C++14 standard (ISO/IEC 14882:2014):
- 2.14.4 Floating literals [lex.fcon]
- C++11 standard (ISO/IEC 14882:2011):
- 2.14.4 Floating literals [lex.fcon]
- C++98 standard (ISO/IEC 14882:1998):
- 2.13.3 Floating literals [lex.fcon]