Przejdź do głównej zawartości

Ldexp

Defined in header <cmath>.

Description

Multiplies a floating point value num by the number 2 raised to the exp power.
The library provides overloads of std::ldexp for all cv-unqualified floating-point types as the type of the parameter num  (od C++23).
Additional Overloads are provided for all integer types, which are treated as double  (od C++11).

Declarations

// 1)
constexpr /* floating-point-type */
ldexp ( /* floating-point-type */ num, int exp )
// 2)
constexpr float ldexpf( float num, int exp );
// 3)
constexpr long double ldexpl( long double num, int exp );
Additional Overloads
// 4)
template< class Integer >
constexpr double ldexp ( Integer num, int exp );

Parameters

num - floating-point or integer value

exp - integer value

Return value

If no errors occur, num multiplied by 2 to the power of exp (num×2exp) is returned.

If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.

If a range error due to underflow occurs, the correct result (after rounding) is returned.

Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559):

Unless a range error occurs, FE_INEXACT is never raised (the result is exact)
Unless a range error occurs, the current rounding mode is ignored
If num is ±0, it is returned, unmodified
If num is ±∞, it is returned, unmodified
If exp is 0, then num is returned, unmodified
If num is NaN, NaN is returned

Notes

On binary systems (where FLT_RADIX is 2), std::ldexp is equivalent to std::scalbn.

The function std::ldexp ("load exponent"), together with its dual, std::frexp, can be used to manipulate the representation of a floating-point number without direct bit manipulations.

On many implementations, std::ldexp is less efficient than multiplication or division by a power of two using arithmetic operators.

The additional overloads are not required to be provided exactly as Additional Overloads. They only need to be sufficient to ensure that for their argument num of integer type,

std::ldexp(num, exp) has the same effect as std::ldexp(static_cast<double>(num), exp).

Examples

#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstring>
#include <iostream>

// #pragma STDC FENV_ACCESS ON

int main()
{
std::cout
<< "ldexp(7, -4) = "
<< std::ldexp(7, -4) << '\n'
<< "ldexp(1, -1074) = "
<< std::ldexp(1, -1074)
<< " (minimum positive subnormal double)\n"
<< "ldexp(nextafter(1,0), 1024) = "
<< std::ldexp(std::nextafter(1,0), 1024)
<< " (largest finite double)\n";

// special values
std::cout
<< "ldexp(-0, 10) = "
<< std::ldexp(-0.0, 10) << '\n'
<< "ldexp(-Inf, -1) = "
<< std::ldexp(-INFINITY, -1) << '\n';

// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);

std::cout
<< "ldexp(1, 1024) = "
<< std::ldexp(1, 1024) << '\n';

if (errno == ERANGE)
std::cout
<< "errno == ERANGE: "
<< std::strerror(errno) << '\n';
if (std::fetestexcept(FE_OVERFLOW))
std::cout
<< "FE_OVERFLOW raised\n";
}

Result
ldexp(7, -4) = 0.4375
ldexp(1, -1074) = 4.94066e-324 (minimum positive subnormal double)
ldexp(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double)
ldexp(-0, 10) = -0
ldexp(-Inf, -1) = -inf
ldexp(1, 1024) = inf
errno == ERANGE: Numerical result out of range
FE_OVERFLOW raised

Ldexp

Defined in header <cmath>.

Description

Multiplies a floating point value num by the number 2 raised to the exp power.
The library provides overloads of std::ldexp for all cv-unqualified floating-point types as the type of the parameter num  (od C++23).
Additional Overloads are provided for all integer types, which are treated as double  (od C++11).

Declarations

// 1)
constexpr /* floating-point-type */
ldexp ( /* floating-point-type */ num, int exp )
// 2)
constexpr float ldexpf( float num, int exp );
// 3)
constexpr long double ldexpl( long double num, int exp );
Additional Overloads
// 4)
template< class Integer >
constexpr double ldexp ( Integer num, int exp );

Parameters

num - floating-point or integer value

exp - integer value

Return value

If no errors occur, num multiplied by 2 to the power of exp (num×2exp) is returned.

If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.

If a range error due to underflow occurs, the correct result (after rounding) is returned.

Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559):

Unless a range error occurs, FE_INEXACT is never raised (the result is exact)
Unless a range error occurs, the current rounding mode is ignored
If num is ±0, it is returned, unmodified
If num is ±∞, it is returned, unmodified
If exp is 0, then num is returned, unmodified
If num is NaN, NaN is returned

Notes

On binary systems (where FLT_RADIX is 2), std::ldexp is equivalent to std::scalbn.

The function std::ldexp ("load exponent"), together with its dual, std::frexp, can be used to manipulate the representation of a floating-point number without direct bit manipulations.

On many implementations, std::ldexp is less efficient than multiplication or division by a power of two using arithmetic operators.

The additional overloads are not required to be provided exactly as Additional Overloads. They only need to be sufficient to ensure that for their argument num of integer type,

std::ldexp(num, exp) has the same effect as std::ldexp(static_cast<double>(num), exp).

Examples

#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstring>
#include <iostream>

// #pragma STDC FENV_ACCESS ON

int main()
{
std::cout
<< "ldexp(7, -4) = "
<< std::ldexp(7, -4) << '\n'
<< "ldexp(1, -1074) = "
<< std::ldexp(1, -1074)
<< " (minimum positive subnormal double)\n"
<< "ldexp(nextafter(1,0), 1024) = "
<< std::ldexp(std::nextafter(1,0), 1024)
<< " (largest finite double)\n";

// special values
std::cout
<< "ldexp(-0, 10) = "
<< std::ldexp(-0.0, 10) << '\n'
<< "ldexp(-Inf, -1) = "
<< std::ldexp(-INFINITY, -1) << '\n';

// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);

std::cout
<< "ldexp(1, 1024) = "
<< std::ldexp(1, 1024) << '\n';

if (errno == ERANGE)
std::cout
<< "errno == ERANGE: "
<< std::strerror(errno) << '\n';
if (std::fetestexcept(FE_OVERFLOW))
std::cout
<< "FE_OVERFLOW raised\n";
}

Result
ldexp(7, -4) = 0.4375
ldexp(1, -1074) = 4.94066e-324 (minimum positive subnormal double)
ldexp(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double)
ldexp(-0, 10) = -0
ldexp(-Inf, -1) = -inf
ldexp(1, 1024) = inf
errno == ERANGE: Numerical result out of range
FE_OVERFLOW raised