Przejdź do głównej zawartości

Lgamma

Defined in header <cmath>.

Description

Computes the natural logarithm of the absolute value of the gamma function of num.
The library provides overloads of std::lgamma for all cv-unqualified floating-point types as the type of the parameter num  (od C++23).

Additional Overloads are provided for all integer types, which are treated as double.

Declarations

// 1)
/* floating-point-type */ lgamma( /* floating-point-type */ num );
// 2)
float lgammaf( float num );
// 3)
long double lgammal( long double num );
Additional Overloads
// 4)
template< class Integer >
double lgamma ( Integer num );

Parameters

num - floating-point or integer value

Return value

If no errors occur, the value of the logarithm of the gamma function of num, that is, math here , is returned.

If a pole error occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.

If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.

Error handling

Errors are reported as specified in math_errhandling.

If num is zero or is an integer less than zero, a pole error may occur.

If the implementation supports IEEE floating-point arithmetic (IEC 60559)

If the argument is 1, +0 is returned. If the argument is 2, +0 is returned. If the argument is ±0, +∞ is returned and FE_DIVBYZERO is raised. If the argument is a negative integer, +∞ is returned and FE_DIVBYZERO is raised. If the argument is ±∞, +∞ is returned. If the argument is NaN, NaN is returned.

Notes

If num is a natural number, std::lgamma(num) is the logarithm of the factorial of num - 1.

The POSIX version of lgamma is not thread-safe: each execution of the function stores the sign of the gamma function of num in the static external variable signgam. Some implementations provide lgamma_r, which takes a pointer to user-provided storage for singgam as the second parameter, and is thread-safe.

There is a non-standard function named gamma in various implementations, but its definition is inconsistent. For example, glibc and 4.2BSD version of gamma executes lgamma, but 4.4BSD version of gamma executes tgamma.

The additional overloads are not required to be provided exactly as Additional Overloads. They only need to be sufficient to ensure that for their argument num of integer type, std::lgamma(num) has the same effect as std::lgamma(static_cast<double>(num)).

Examples

#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstring>
#include <iostream>

// #pragma STDC FENV_ACCESS ON

const double pi = std::acos(-1);
// or std::numbers::pi since C++20

int main()
{
std::cout
<< "lgamma(10) = "
<< std::lgamma(10)
<< ", log(9!) = "
<< std::log(std::tgamma(10))
<< ", exp(lgamma(10)) = "
<< std::exp(std::lgamma(10)) << '\n'
<< "lgamma(0.5) = "
<< std::lgamma(0.5)
<< ", log(sqrt(pi)) = "
<< std::log(std::sqrt(pi)) << '\n';

// special values
std::cout
<< "lgamma(1) = "
<< std::lgamma(1) << '\n'
<< "lgamma(+Inf) = "
<< std::lgamma(INFINITY) << '\n';

// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);

std::cout
<< "lgamma(0) = "
<< std::lgamma(0) << '\n';

if (errno == ERANGE)
std::cout
<< "errno == ERANGE: "
<< std::strerror(errno) << '\n';
if (std::fetestexcept(FE_DIVBYZERO))
std::cout
<< "FE_DIVBYZERO raised\n";
}

Possible Result
lgamma(10) = 12.8018, log(9!) = 12.8018, exp(lgamma(10)) = 362880
lgamma(0.5) = 0.572365, log(sqrt(pi)) = 0.572365
lgamma(1) = 0
lgamma(+Inf) = inf
lgamma(0) = inf
errno == ERANGE: Numerical result out of range
FE_DIVBYZERO raised

Lgamma

Defined in header <cmath>.

Description

Computes the natural logarithm of the absolute value of the gamma function of num.
The library provides overloads of std::lgamma for all cv-unqualified floating-point types as the type of the parameter num  (od C++23).

Additional Overloads are provided for all integer types, which are treated as double.

Declarations

// 1)
/* floating-point-type */ lgamma( /* floating-point-type */ num );
// 2)
float lgammaf( float num );
// 3)
long double lgammal( long double num );
Additional Overloads
// 4)
template< class Integer >
double lgamma ( Integer num );

Parameters

num - floating-point or integer value

Return value

If no errors occur, the value of the logarithm of the gamma function of num, that is, math here , is returned.

If a pole error occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.

If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.

Error handling

Errors are reported as specified in math_errhandling.

If num is zero or is an integer less than zero, a pole error may occur.

If the implementation supports IEEE floating-point arithmetic (IEC 60559)

If the argument is 1, +0 is returned. If the argument is 2, +0 is returned. If the argument is ±0, +∞ is returned and FE_DIVBYZERO is raised. If the argument is a negative integer, +∞ is returned and FE_DIVBYZERO is raised. If the argument is ±∞, +∞ is returned. If the argument is NaN, NaN is returned.

Notes

If num is a natural number, std::lgamma(num) is the logarithm of the factorial of num - 1.

The POSIX version of lgamma is not thread-safe: each execution of the function stores the sign of the gamma function of num in the static external variable signgam. Some implementations provide lgamma_r, which takes a pointer to user-provided storage for singgam as the second parameter, and is thread-safe.

There is a non-standard function named gamma in various implementations, but its definition is inconsistent. For example, glibc and 4.2BSD version of gamma executes lgamma, but 4.4BSD version of gamma executes tgamma.

The additional overloads are not required to be provided exactly as Additional Overloads. They only need to be sufficient to ensure that for their argument num of integer type, std::lgamma(num) has the same effect as std::lgamma(static_cast<double>(num)).

Examples

#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstring>
#include <iostream>

// #pragma STDC FENV_ACCESS ON

const double pi = std::acos(-1);
// or std::numbers::pi since C++20

int main()
{
std::cout
<< "lgamma(10) = "
<< std::lgamma(10)
<< ", log(9!) = "
<< std::log(std::tgamma(10))
<< ", exp(lgamma(10)) = "
<< std::exp(std::lgamma(10)) << '\n'
<< "lgamma(0.5) = "
<< std::lgamma(0.5)
<< ", log(sqrt(pi)) = "
<< std::log(std::sqrt(pi)) << '\n';

// special values
std::cout
<< "lgamma(1) = "
<< std::lgamma(1) << '\n'
<< "lgamma(+Inf) = "
<< std::lgamma(INFINITY) << '\n';

// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);

std::cout
<< "lgamma(0) = "
<< std::lgamma(0) << '\n';

if (errno == ERANGE)
std::cout
<< "errno == ERANGE: "
<< std::strerror(errno) << '\n';
if (std::fetestexcept(FE_DIVBYZERO))
std::cout
<< "FE_DIVBYZERO raised\n";
}

Possible Result
lgamma(10) = 12.8018, log(9!) = 12.8018, exp(lgamma(10)) = 362880
lgamma(0.5) = 0.572365, log(sqrt(pi)) = 0.572365
lgamma(1) = 0
lgamma(+Inf) = inf
lgamma(0) = inf
errno == ERANGE: Numerical result out of range
FE_DIVBYZERO raised