Przejdź do głównej zawartości

Mathematical special functions

The Mathematical Special Functions library was originally part of Library TR1 ISO/IEC TR 19768:2007, then published as an independent ISO standard, ISO/IEC 29124:2010, and finally merged to ISO C++ as of C++17.

Functions

Defined in header <cmath>

pubassoc_laguerre
assoc_laguerref
assoc_laguerrel
Associated Languerre polynomials
pubassoc_legendre
assoc_legendref
assoc_legendrel
Associated Languerre polynomials
pubbeta
betaf
betal
Beta function
pubcomp_ellint_1
comp_ellint_1f
comp_elling_1l
(Complete) Eliptic integral of the first kind
pubcomp_ellint_2
comp_ellint_2f
comp_elling_2l
(Complete) Eliptic integral of the second kind
pubcomp_ellint_3
comp_ellint_3f
comp_elling_3l
(Complete) Eliptic integral of the third kind
pubcyl_bessel_i
cyl_bessel_if
cyl_bessel_il
Regular modified cylindrical Bessel functions
pubcyl_bessel_j
cyl_bessel_jf
cyl_bessel_jl
Cylindrical Bessel functions (of the first kind)
pubcyl_bessel_k
cyl_bessel_kf
cyl_bessel_kl
Irregular modified cylindrical Bessel functions
pubcyl_neumann
cyl_neumannf
cyl_neumannl
Cylindrical Neumann functions
pubellint_1
ellint_1f
ellint_1l
(Incomplete) Elliptic integral of the first kind
pubellint_2
ellint_2f
ellint_2l
(Incomplete) Elliptic integral of the second kind
pubellint_3
ellint_3f
ellint_3l
(Incomplete) Elliptic integral of the third kind
pubexpint
expintf
expintl
Exponential integral
pubhermite
hermitef
hermitel
Hermite polynomials
publegendre
legendref
legendrel
Legendre polynomials
publaguerre
laguerref
laguerrel
Laguerre polynomials
pubriemann_zeta
riemann_zetaf
riemann_zetal
Riemann zeta function
pubsph_bessel
sph_besself
sph_bessell
Spherical Bessel functions (of the first kind)
pubsph_legendre
sph_legendref
sph_legendrel
Spherical associated Legendre functions
pubsph_neumann
sph_neumannf
sph_neumannl
Spherical Neumann functions

Mathematical special functions

The Mathematical Special Functions library was originally part of Library TR1 ISO/IEC TR 19768:2007, then published as an independent ISO standard, ISO/IEC 29124:2010, and finally merged to ISO C++ as of C++17.

Functions

Defined in header <cmath>

pubassoc_laguerre
assoc_laguerref
assoc_laguerrel
Associated Languerre polynomials
pubassoc_legendre
assoc_legendref
assoc_legendrel
Associated Languerre polynomials
pubbeta
betaf
betal
Beta function
pubcomp_ellint_1
comp_ellint_1f
comp_elling_1l
(Complete) Eliptic integral of the first kind
pubcomp_ellint_2
comp_ellint_2f
comp_elling_2l
(Complete) Eliptic integral of the second kind
pubcomp_ellint_3
comp_ellint_3f
comp_elling_3l
(Complete) Eliptic integral of the third kind
pubcyl_bessel_i
cyl_bessel_if
cyl_bessel_il
Regular modified cylindrical Bessel functions
pubcyl_bessel_j
cyl_bessel_jf
cyl_bessel_jl
Cylindrical Bessel functions (of the first kind)
pubcyl_bessel_k
cyl_bessel_kf
cyl_bessel_kl
Irregular modified cylindrical Bessel functions
pubcyl_neumann
cyl_neumannf
cyl_neumannl
Cylindrical Neumann functions
pubellint_1
ellint_1f
ellint_1l
(Incomplete) Elliptic integral of the first kind
pubellint_2
ellint_2f
ellint_2l
(Incomplete) Elliptic integral of the second kind
pubellint_3
ellint_3f
ellint_3l
(Incomplete) Elliptic integral of the third kind
pubexpint
expintf
expintl
Exponential integral
pubhermite
hermitef
hermitel
Hermite polynomials
publegendre
legendref
legendrel
Legendre polynomials
publaguerre
laguerref
laguerrel
Laguerre polynomials
pubriemann_zeta
riemann_zetaf
riemann_zetal
Riemann zeta function
pubsph_bessel
sph_besself
sph_bessell
Spherical Bessel functions (of the first kind)
pubsph_legendre
sph_legendref
sph_legendrel
Spherical associated Legendre functions
pubsph_neumann
sph_neumannf
sph_neumannl
Spherical Neumann functions