Mathematical special functions
The Mathematical Special Functions library was originally part of Library TR1 ISO/IEC TR 19768:2007, then published as an independent ISO standard, ISO/IEC 29124:2010, and finally merged to ISO C++ as of C++17.
Functions
Defined in header <cmath>
pub | assoc_laguerre assoc_laguerref assoc_laguerrel | Associated Languerre polynomials |
pub | assoc_legendre assoc_legendref assoc_legendrel | Associated Languerre polynomials |
pub | beta betaf betal | Beta function |
pub | comp_ellint_1 comp_ellint_1f comp_elling_1l | (Complete) Eliptic integral of the first kind |
pub | comp_ellint_2 comp_ellint_2f comp_elling_2l | (Complete) Eliptic integral of the second kind |
pub | comp_ellint_3 comp_ellint_3f comp_elling_3l | (Complete) Eliptic integral of the third kind |
pub | cyl_bessel_i cyl_bessel_if cyl_bessel_il | Regular modified cylindrical Bessel functions |
pub | cyl_bessel_j cyl_bessel_jf cyl_bessel_jl | Cylindrical Bessel functions (of the first kind) |
pub | cyl_bessel_k cyl_bessel_kf cyl_bessel_kl | Irregular modified cylindrical Bessel functions |
pub | cyl_neumann cyl_neumannf cyl_neumannl | Cylindrical Neumann functions |
pub | ellint_1 ellint_1f ellint_1l | (Incomplete) Elliptic integral of the first kind |
pub | ellint_2 ellint_2f ellint_2l | (Incomplete) Elliptic integral of the second kind |
pub | ellint_3 ellint_3f ellint_3l | (Incomplete) Elliptic integral of the third kind |
pub | expint expintf expintl | Exponential integral |
pub | hermite hermitef hermitel | Hermite polynomials |
pub | legendre legendref legendrel | Legendre polynomials |
pub | laguerre laguerref laguerrel | Laguerre polynomials |
pub | riemann_zeta riemann_zetaf riemann_zetal | Riemann zeta function |
pub | sph_bessel sph_besself sph_bessell | Spherical Bessel functions (of the first kind) |
pub | sph_legendre sph_legendref sph_legendrel | Spherical associated Legendre functions |
pub | sph_neumann sph_neumannf sph_neumannl | Spherical Neumann functions |