Skip to main content

std::set_union() algorithm

// (1)
template< class InputIt1, class InputIt2, class OutputIt >
constexpr OutputIt set_union( InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2, OutputIt d_first );

// (2)
template< class InputIt1, class InputIt2, class OutputIt, class Compare >
constexpr OutputIt set_union( InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
OutputIt d_first, Compare comp );

// (3)
template< class ExecutionPolicy, class ForwardIt1,
class ForwardIt2, class ForwardIt3 >
ForwardIt3 set_union( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt3 d_first );

// (4)
template< class ExecutionPolicy, class ForwardIt1,
class ForwardIt2, class ForwardIt3, class Compare >
ForwardIt3 set_union( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt3 d_first, Compare comp );

Constructs a sorted union beginning at d_first consisting of the set of elements present in one or both sorted ranges [first1; last1) and [first2; last2).

If [first1; last1) contains m elements that are equivalent to each other and [first2; last2) contains n elements that are equivalent to them, then all m elements will be copied from [first1; last1) to the output range, preserving order, and then the final std::max(n - m, 0) elements will be copied from [first2; last2) to the output range, also preserving order.

  • (1) Both ranges must be sorted with respect to operator<.

  • (2) Both ranges must be sorted with respect to comp.

  • (3 - 4) Same as (1) and (2), but executed according to policy.

    Overload Resolution

    These overloads participate in overload resolution only if std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true.  (until C++20) std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>> is true.  (since C++20)

Undefined Behaviour

If either of the input ranges is not sorted (using operator< or comp, respectively) or overlaps with the output range, the behavior is undefined

.

Parameters

first1
last2

The first sorted range of elements to examine.

first2
last3

The second sorted range of elements to examine.

d_first

The beginning of the destination range.

policy

The execution policy to use. See execution policy for details.

comp

Comparison function object (i.e. an object that satisfies the requirements of Compare). The signature of the comparison function should be equivalent to the following:

bool cmp(const Type1 &a, const Type2 &b);
  • The signature does not need to have const&, but must not modify arguments.
  • Must accept all values of type (possibly const) Type and Type2, regardless of value category (so Type1& is not allowed, nor is Type1 unless for Type1 a move is equivalent to a copy (since C++11))
  • The types Type1 and Type2 must be such that an object of type RandomIt can be implicitly converted to both of them.

Type requirements

InputIt1
InputIt2
LegacyInputIterator
ForwardIt1
ForwardIt2
ForwardIt3
LegacyForwardIterator
OutputIt1LegacyOutputIterator

Return value

Iterator past the end of the constructed range.

Complexity

Given M std::distance(first1, last1) and N as std::distance(first2, last2):

  • (1, 3) at most 2 * (M + N) - 1 comparisons using operator<.
  • (2, 4) at most 2 * (M + N) - 1 comparison with comp.

Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception and ExecutionPolicy is one of the standard policies, std::terminate is called. For any other ExecutionPolicy, the behavior is implementation-defined.
  • If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Possible implementation

set_union(1)
template<class InputIt1, class InputIt2, class OutputIt>
OutputIt set_union(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2, OutputIt d_first)
{
for (; first1 != last1; ++d_first)
{
if (first2 == last2)
return std::copy(first1, last1, d_first);

if (*first2 < *first1)
*d_first = *first2++;
else
{
*d_first = *first1;
if (!(*first1 < *first2))
++first2;
++first1;
}
}
return std::copy(first2, last2, d_first);
}
set_union(2)
template<class InputIt1, class InputIt2, class OutputIt, class Compare>
OutputIt set_union(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2, OutputIt d_first, Compare comp)
{
for (; first1 != last1; ++d_first)
{
if (first2 == last2)
// Finished range 2, include the rest of range 1:
return std::copy(first1, last1, d_first);

if (comp(*first2, *first1))
*d_first = *first2++;
else
{
*d_first = *first1;
if (!comp(*first1, *first2)) // Equivalent => don't need to include *first2.
++first2;
++first1;
}
}
// Finished range 1, include the rest of range 2:
return std::copy(first2, last2, d_first);
}

Notes

This algorithm performs a similar task as std::merge does. Both consume two sorted input ranges and produce a sorted output with elements from both inputs.

The difference between these two algorithms is with handling values from both input ranges which compare equivalent (see notes on LessThanComparable). If any equivalent values appeared n times in the first range and m times in the second, std::merge would output all n + m occurrences whereas std::set_union would output std::max(n, m) ones only.

So std::merge outputs exactly std::distance(first1, last1) + std::distance(first2, last2) values and std::set_union may produce fewer.

Examples

Main.cpp
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>

void println(std::vector<int> const& v)
{
for (int i : v)
std::cout << i << ' ';
std::cout << '\n';
}

int main()
{
std::vector<int> v1, v2, dest;

v1 = {1, 2, 3, 4, 5};
v2 = { 3, 4, 5, 6, 7};

std::set_union(v1.cbegin(), v1.cend(),
v2.cbegin(), v2.cend(),
std::back_inserter(dest));
println(dest);

dest.clear();

v1 = {1, 2, 3, 4, 5, 5, 5};
v2 = { 3, 4, 5, 6, 7};

std::set_union(v1.cbegin(), v1.cend(),
v2.cbegin(), v2.cend(),
std::back_inserter(dest));
println(dest);
}
Possible Output
1 2 3 4 5 6 7 
1 2 3 4 5 5 5 6 7
This article originates from this CppReference page. It was likely altered for improvements or editors' preference. Click "Edit this page" to see all changes made to this document.
Hover to see the original license.

std::set_union() algorithm

// (1)
template< class InputIt1, class InputIt2, class OutputIt >
constexpr OutputIt set_union( InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2, OutputIt d_first );

// (2)
template< class InputIt1, class InputIt2, class OutputIt, class Compare >
constexpr OutputIt set_union( InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
OutputIt d_first, Compare comp );

// (3)
template< class ExecutionPolicy, class ForwardIt1,
class ForwardIt2, class ForwardIt3 >
ForwardIt3 set_union( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt3 d_first );

// (4)
template< class ExecutionPolicy, class ForwardIt1,
class ForwardIt2, class ForwardIt3, class Compare >
ForwardIt3 set_union( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
ForwardIt3 d_first, Compare comp );

Constructs a sorted union beginning at d_first consisting of the set of elements present in one or both sorted ranges [first1; last1) and [first2; last2).

If [first1; last1) contains m elements that are equivalent to each other and [first2; last2) contains n elements that are equivalent to them, then all m elements will be copied from [first1; last1) to the output range, preserving order, and then the final std::max(n - m, 0) elements will be copied from [first2; last2) to the output range, also preserving order.

  • (1) Both ranges must be sorted with respect to operator<.

  • (2) Both ranges must be sorted with respect to comp.

  • (3 - 4) Same as (1) and (2), but executed according to policy.

    Overload Resolution

    These overloads participate in overload resolution only if std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true.  (until C++20) std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>> is true.  (since C++20)

Undefined Behaviour

If either of the input ranges is not sorted (using operator< or comp, respectively) or overlaps with the output range, the behavior is undefined

.

Parameters

first1
last2

The first sorted range of elements to examine.

first2
last3

The second sorted range of elements to examine.

d_first

The beginning of the destination range.

policy

The execution policy to use. See execution policy for details.

comp

Comparison function object (i.e. an object that satisfies the requirements of Compare). The signature of the comparison function should be equivalent to the following:

bool cmp(const Type1 &a, const Type2 &b);
  • The signature does not need to have const&, but must not modify arguments.
  • Must accept all values of type (possibly const) Type and Type2, regardless of value category (so Type1& is not allowed, nor is Type1 unless for Type1 a move is equivalent to a copy (since C++11))
  • The types Type1 and Type2 must be such that an object of type RandomIt can be implicitly converted to both of them.

Type requirements

InputIt1
InputIt2
LegacyInputIterator
ForwardIt1
ForwardIt2
ForwardIt3
LegacyForwardIterator
OutputIt1LegacyOutputIterator

Return value

Iterator past the end of the constructed range.

Complexity

Given M std::distance(first1, last1) and N as std::distance(first2, last2):

  • (1, 3) at most 2 * (M + N) - 1 comparisons using operator<.
  • (2, 4) at most 2 * (M + N) - 1 comparison with comp.

Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception and ExecutionPolicy is one of the standard policies, std::terminate is called. For any other ExecutionPolicy, the behavior is implementation-defined.
  • If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Possible implementation

set_union(1)
template<class InputIt1, class InputIt2, class OutputIt>
OutputIt set_union(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2, OutputIt d_first)
{
for (; first1 != last1; ++d_first)
{
if (first2 == last2)
return std::copy(first1, last1, d_first);

if (*first2 < *first1)
*d_first = *first2++;
else
{
*d_first = *first1;
if (!(*first1 < *first2))
++first2;
++first1;
}
}
return std::copy(first2, last2, d_first);
}
set_union(2)
template<class InputIt1, class InputIt2, class OutputIt, class Compare>
OutputIt set_union(InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2, OutputIt d_first, Compare comp)
{
for (; first1 != last1; ++d_first)
{
if (first2 == last2)
// Finished range 2, include the rest of range 1:
return std::copy(first1, last1, d_first);

if (comp(*first2, *first1))
*d_first = *first2++;
else
{
*d_first = *first1;
if (!comp(*first1, *first2)) // Equivalent => don't need to include *first2.
++first2;
++first1;
}
}
// Finished range 1, include the rest of range 2:
return std::copy(first2, last2, d_first);
}

Notes

This algorithm performs a similar task as std::merge does. Both consume two sorted input ranges and produce a sorted output with elements from both inputs.

The difference between these two algorithms is with handling values from both input ranges which compare equivalent (see notes on LessThanComparable). If any equivalent values appeared n times in the first range and m times in the second, std::merge would output all n + m occurrences whereas std::set_union would output std::max(n, m) ones only.

So std::merge outputs exactly std::distance(first1, last1) + std::distance(first2, last2) values and std::set_union may produce fewer.

Examples

Main.cpp
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>

void println(std::vector<int> const& v)
{
for (int i : v)
std::cout << i << ' ';
std::cout << '\n';
}

int main()
{
std::vector<int> v1, v2, dest;

v1 = {1, 2, 3, 4, 5};
v2 = { 3, 4, 5, 6, 7};

std::set_union(v1.cbegin(), v1.cend(),
v2.cbegin(), v2.cend(),
std::back_inserter(dest));
println(dest);

dest.clear();

v1 = {1, 2, 3, 4, 5, 5, 5};
v2 = { 3, 4, 5, 6, 7};

std::set_union(v1.cbegin(), v1.cend(),
v2.cbegin(), v2.cend(),
std::back_inserter(dest));
println(dest);
}
Possible Output
1 2 3 4 5 6 7 
1 2 3 4 5 5 5 6 7
This article originates from this CppReference page. It was likely altered for improvements or editors' preference. Click "Edit this page" to see all changes made to this document.
Hover to see the original license.