std::ranges::binary_search() algorithm
- since C++20
- Simplified
- Detailed
// (1)
constexpr bool
binary_search( I first, S last, const T& value, Comp comp = {}, Proj proj = {} );
// (2)
constexpr bool
binary_search( R&& r, const T& value, Comp comp = {}, Proj proj = {} );
The type of arguments are generic and have the following constraints:
-
I-std::forward_iterator -
S-std::sentinel_for<I> -
R-std::ranges::forward_range -
Comp:- (1) -
indirect_strict_weak_order< const T*, projected<I, Proj>> - (2) -
indirect_strict_weak_order< const T*, projected<ranges::iterator_t<R>, Proj>>
(The
std::namespace was ommitted here for readability) - (1) -
-
T- (none) -
Proj- (none)
The Proj and Comp template arguments have the following default types: std::identity, ranges::less for all overloads.
// (1)
template<
std::forward_iterator I,
std::sentinel_for<I> S,
class T,
class Proj = std::identity,
std::indirect_strict_weak_order< const T*, std::projected<I, Proj>> Comp = ranges::less
>
constexpr bool
binary_search( I first, S last, const T& value, Comp comp = {}, Proj proj = {} );
// (2)
template<
ranges::forward_range R,
class T,
class Proj = std::identity,
std::indirect_strict_weak_order< const T*, std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less
>
constexpr bool
binary_search( R&& r, const T& value, Comp comp = {}, Proj proj = {} );
-
(1) Returns an iterator pointing to the first element in the range [
first;last) that is not less than (i.e. greater or equal to)value, orlastif no such element is found.The range [
first;last) must be partitioned with respect to the expressioncomp(element, value), i.e., all elements for which the expression istruemust precede all elements for which the expression isfalse.A fully-sorted range meets this criterion.
For ranges::binary_search to succeed, the range [first; last) must be at least partially ordered with respect to value,
i.e. it must satisfy all of the following requirements:
- Partitioned with respect to
std::invoke(comp, std::invoke(proj, element), value)(that is, all projected elements for which the expression istrueprecedes all elements for which the expression isfalse). - Partitioned with respect to
!std::invoke(comp, value, std::invoke(proj, element)). - For all elements, if
std::invoke(comp, std::invoke(proj, element), value)istruethen!std::invoke(comp, value, std::invoke(proj, element))is alsotrue.
A fully-sorted range meets these criteria.
-
(1) Checks if a projected element equivalent to
valueappears within the range [first;last). -
(2) Same as (1), but uses
ras the source range, as if usingranges::begin(r)asfirstandranges::end(r)aslast.
The function-like entities described on this page are niebloids.
Parameters
first last | The partially-ordered range of elements to examine. |
r | The partially-ordered range of elements to examine. |
value | The value to compare the elements to. |
comp | Comparison function to apply to the projected elements. |
proj | Projection to apply to the elements. |
Return value
If an element equal to value is found, true.
Otherwise, false.
Complexity
At most log2(last - first) + O(1) comparisons and applications of the projection.
However, for an iterator that does not model random_access_iterator, the number of iterator increments is linear.
Exceptions
(none)
Possible implementation
ranges::binary_search
Examples
#include <algorithm>
#include <iostream>
#include <ranges>
int main()
{
constexpr static auto haystack = {1, 3, 4, 5, 9};
static_assert(std::ranges::is_sorted(haystack));
for (const int needle : std::views::iota(1)
| std::views::take(3))
{
std::cout << "Searching for " << needle << ": ";
std::ranges::binary_search(haystack, needle)
? std::cout << "found " << needle << '\n'
: std::cout << "no dice!\n";
}
}
Searching for 1: found 1
Searching for 2: no dice!
Searching for 3: found 3
Hover to see the original license.