Skip to main content

std::ranges::ends_with() algorithm

// (1)
constexpr bool ends_with( I1 first1, S1 last1, I2 first2, S2 last2,
Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} );

// (2)
constexpr bool ends_with( R1&& r1, R2&& r2,
Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} );

The type of arguments are generic and have the following constraints:

  • I1, I2 - std::input_iterator
  • S1, S2 - std::sentinel_for<I1>, std::sentinel_for<I2>
  • Pred - (none)
  • Proj1, Proj2 - (none)
  • (2) - R1, R2 - std::ranges::input_range

The Pred template argumenth as a default type of ranges::equal_to for all overloads. The Proj1 and Proj2 template arguments have a default type of std::identity for all overloads.

Additionally, each overload has the following constraints:

  • (1):
    (forward_iterator<I1> || sized_sentinel_for<S1, I1>)
    && (forward_iterator<I2> || sized_sentinel_for<S2, I2>)
    && indirectly_comparable<I1, I2, Pred, Proj1, Proj2>`
  • (2):
    (ranges::forward_range<R1> || ranges::sized_range<R1>)
    && (ranges::forward_range<R2> || ranges::sized_range<R2>)
    && std::indirectly_comparable<ranges::iterator_t<R1>,
    ranges::iterator_t<R2>,
    Pred, Proj1, Proj2>

(The std:: namespace was ommitted here for readability)

Checks whether the second range matches the suffix of the first range.

  • (1) Comparison is done by applying the binary predicate pred to elements in two ranges projected by proj1 and proj2 respectively.

  • (2) Same as (1), but uses r1 as the first source range and r2 as the second source range, as if using ranges::begin(r1) as first1, ranges::end(r1) as last1, ranges::begin(r2) as first2, and ranges::end(r2) as last2.

The function-like entities described on this page are niebloids.

Parameters

first1
last1

The range of elements to examine.

r1

The range of elements to examine.

first2
last2

The range of elements to be used as suffix.

r2

The range of elements to be used as suffix.

pred

Binary predicate to compare the elements with.

proj1

Projection to apply to the elements in the first range.

proj2

Projection to apply to the elements in the second range.

Return value

true if the second range matches the prefix of the first range, false otherwise.

More specifically:

Let N1 and N2 denote the size of ranges [first1; last1) and [first2; last2) respectively.

  • If N1 < N2, returns false.
  • Otherwise, if every element in the range [first2; last2) is equal to the corresponding element in [first1 + N1 - N2; last1) (compared using pred after projections), returns true.

Complexity

At most min(N1, N2) applications of the predicate and both projections. The predicate and both projections are not applied if N1 < N2

If both N1 and N2 can be calculated in constant time (i.e. both iterator-sentinel type pairs model sized_sentinel_for, or both range types model sized_range) and N1 < N2, the time complexity is constant.

Exceptions

(none)

Possible implementation

ends_with(1) and starts_with(2)
struct ends_with_fn
{
template<std::input_iterator I1, std::sentinel_for<I1> S1,
std::input_iterator I2, std::sentinel_for<I2> S2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity>
requires (std::forward_iterator<I1> || std::sized_sentinel_for<S1, I1>) &&
(std::forward_iterator<I2> || std::sized_sentinel_for<S2, I2>) &&
std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {}) const
{
const auto n1 = ranges::distance(first1, last1);
const auto n2 = ranges::distance(first2, last2);
if (n1 < n2)
return false;
ranges::advance(first1, n1 - n2);
return ranges::equal(std::move(first1), std::move(last1),
std::move(first2), std::move(last2),
std::move(pred), std::move(proj1), std::move(proj2));
}

template<ranges::input_range R1, ranges::input_range R2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity>
requires (ranges::forward_range<R1> || ranges::sized_range<R1>) &&
(ranges::forward_range<R2> || ranges::sized_range<R2>) &&
std::indirectly_comparable<ranges::iterator_t<R1>,
ranges::iterator_t<R2>,
Pred, Proj1, Proj2>
constexpr bool operator()(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {}) const
{
return (*this)(ranges::begin(r1), ranges::end(r1),
ranges::begin(r2), ranges::end(r2),
std::move(pred), std::move(proj1), std::move(proj2));
}
};

inline constexpr ends_with_fn ends_with {};

Examples

Main.cpp
#include <algorithm>
#include <array>
#include <iostream>

int main()
{
std::cout
<< std::boolalpha
<< std::ranges::ends_with("static_cast", "cast") << '\n'
<< std::ranges::ends_with("const_cast", "cast") << '\n'
<< std::ranges::ends_with("reinterpret_cast", "cast") << '\n'
<< std::ranges::ends_with("dynamic_cast", "cast") << '\n'
<< std::ranges::ends_with("move", "cast") << '\n'
<< std::ranges::ends_with("move_if_noexcept", "cast") << '\n'
<< std::ranges::ends_with("forward", "cast") << '\n';
static_assert(
! std::ranges::ends_with("as_const", "cast") and
!! std::ranges::ends_with("bit_cast", "cast") and
! std::ranges::ends_with("to_underlying", "cast") and
!! std::ranges::ends_with(std::array {1,2,3,4}, std::array {3,4}) and
! std::ranges::ends_with(std::array {1,2,3,4}, std::array {4,5})
);
}
Output
true
true
true
true
false
false
false
This article originates from this CppReference page. It was likely altered for improvements or editors' preference. Click "Edit this page" to see all changes made to this document.
Hover to see the original license.