std::ranges::is_heap_until() algorithm
- since C++20
- Simplified
- Detailed
// (1)constexpr I is_heap_until( I first, S last, Comp comp = {}, Proj proj = {} );// (2)constexpr ranges::borrowed_iterator_t<R> is_heap_until( R&& r, Comp comp = {}, Proj proj = {} );
The type of arguments are generic and have the following constraints:
I
-std::random_access_iterator
S
-std::sentinel_for<I>
R
-std::ranges::random_access_range
Comp
:- (1) -
std::indirect_strict_weak_order<std::projected<I, Proj>>
- (2) -
std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>>
- (1) -
Proj
- (none)
The Proj
and Comp
template arguments have the following default types: std::identity
, ranges::less
for all overloads.
// (1)template< std::random_access_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less>constexpr I is_heap_until( I first, S last, Comp comp = {}, Proj proj = {} );// (2)template< ranges::random_access_range R, class Proj = std::identity, std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>constexpr ranges::borrowed_iterator_t<R> is_heap_until( R&& r, Comp comp = {}, Proj proj = {} );
Examines the range [first
; last
) and finds the largest range beginning at first
which is a max heap.
-
(1) Elements are compared using the given binary comparison function
comp
and projection objectproj
. -
(2) Same as (1), but uses
r
as the source range, as if usingranges::begin(r)
asfirst
andranges::end(r)
aslast
.
The function-like entities described on this page are niebloids.
Parameters
first last | The range of elements to examine. |
r | The range of elements to examine. |
pred | Predicate to apply to the projected elements. |
proj | The projection to apply to the elements. |
Return value
The upper bound of the largest range beginning at first
which is a max heap.
That is, the last iterator it for which range [first
; it
) is a max heap with respect to comp
and proj
.
Complexity
Linear in the distance between first
and last
.
Exceptions
(none)
Possible implementation
is_heap_until(1) and is_heap(2)
struct is_heap_until_fn{ template<std::random_access_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_strict_weak_order< std::projected<I, Proj>> Comp = ranges::less> constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const { std::iter_difference_t<I> n {ranges::distance(first, last)}, dad {0}, son {1}; for (; son != n; ++son) { if (std::invoke(comp, std::invoke(proj, *(first + dad)), std::invoke(proj, *(first + son)))) return first + son; else if ((son % 2) == 0) ++dad; } return first + n; } template<ranges::random_access_range R, class Proj = std::identity, std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less> constexpr ranges::borrowed_iterator_t<R> operator()(R&& r, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj)); }};inline constexpr is_heap_until_fn is_heap_until {};
Notes
A max heap is a range of elements [f
; l
), arranged with respect to comparator comp
and projection proj
, that has the following properties:
- Given
N
asl - f
,p = f[(i - 1) / 2]
, andq = f[i]
, for all0 < i < N
, the expressionstd::invoke(comp, std::invoke(proj, p), std::invoke(proj, q))
evaluates tofalse
. - A new element can be added using
ranges::push_heap
, in O(log(N)) time. - The first element can be removed using
ranges::pop_heap
, in O(log(N)) time.
Examples
#include <algorithm>#include <cmath>#include <iostream>#include <iterator>#include <vector>void out(const auto& what, int n = 1){ while (n-- > 0) std::cout << what;}void draw_bin_tree(auto first, auto last);int main(){ std::vector<int> v {3, 1, 4, 1, 5, 9}; std::ranges::make_heap(v); // probably mess up the heap v.push_back(2); v.push_back(6); out("v after make_heap and push_back: \n"); draw_bin_tree(v.begin(), v.end()); out("the max-heap prefix of v: \n"); const auto heap_end = std::ranges::is_heap_until(v); draw_bin_tree(v.begin(), heap_end);}void draw_bin_tree(auto first, auto last){ auto bails = [](int n, int w) { auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); }; n /= 2; if (!n) return; for (out(' ', w); n-- > 0; ) b(w), out(' ', w + w + 1); out('\n'); }; auto data = [](int n, int w, auto& first, auto last) { for(out(' ', w); n-- > 0 && first != last; ++first) out(*first), out(' ', w + w + 1); out('\n'); }; auto tier = [&](int t, int m, auto& first, auto last) { const int n {1 << t}; const int w {(1 << (m - t - 1)) - 1}; bails(n, w), data(n, w, first, last); }; const auto size {std::ranges::distance(first, last)}; const int m {static_cast<int>(std::ceil(std::log2(1 + size)))}; for (int i {}; i != m; ++i) tier(i, m, first, last);}
v after make_heap and push_back: 9 ┌───┴───┐ 5 4 ┌─┴─┐ ┌─┴─┐ 1 1 3 2 ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ 6 the max-heap prefix of v: 9 ┌─┴─┐ 5 4 ┌┴┐ ┌┴┐ 1 1 3 2
Hover to see the original license.