Note, this article is not finished! You can help by editing this doc page.
Overview
- Simplified (since C++98)
- Detailed
template< class Key, /* ... */ >
class unorderd_multiset;
- Regular (since C++98)
- Polymorphic (since C++17)
template<
class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>
>
class unordered_multiset;
namespace pmr {
template <class Key,
class Hash = std::hash<Key>,
class Pred = std::equal_to<Key>>
using unordered_multiset = std::unordered_multiset<Key, Hash, Pred,
std::pmr::polymorphic_allocator<Key>>
}
The std::unordered_multiset
is an unordered associative container for storing unique objects.
Technical details
Technical definition of an unordered_multiset
std::unordered_multiset
is an associative container that contains a set of unique objects of type Key
.
Search, insertion, and removal have average constant-time complexity.
Internally, the elements are not sorted in any particular order, but organized into buckets. Which bucket an element is placed into depends entirely on the hash of its value. This allows fast access to individual elements, since once a hash is computed, it refers to the exact bucket the element is placed into.
Container elements may not be modified (even by non const iterators) since modification could change an element's hash and corrupt the container.
std::unordered_multiset
meets the requirements of Container
, AllocatorAwareContainer
,
UnorderedAssociativeContainer
.
std::unordered_multiset
Defined in | unordered_set |
Template parameters
pub | Key | The type of the stored keys. |
pub | Hash | A function object that perfoms hashing on two objects of type |
pub | Compare | A comparator type satisfying Compare. |
pub | Allocator | An allocator type responsible for allocating and deallocating memory. Must satisfy Allocator. |
Type names
pub | key_type | Key |
pub | value_type | Key |
pub | size_type | Unsigned integer type (usually |
pub | difference_type | Signed integer type (usually |
pub | hasher | Hash |
pub | key_equal | KeyEqual |
pub | allocator_type | Allocator |
pub | reference | value_type& |
pub | const_reference | const value_type& |
pub | pointer | std::allocator_traits<Allocator>::pointer |
pub | const_pointer | std::allocator_traits<Allocator>::const_pointer |
pub | iterator ❗ | Constant LegacyBidirectionalIterator to |
pub | const_iterator ❗ | LegacyBidirectionalIterator to |
pub | local_iterator | Like |
pub | const_local_iterator | Like |
pub | node_type (since C++17) | A specialization of node handle representing a container node. |
Unordered multiset's iterators
iterator
is said to be constant because it is impossible to modify the values it's pointing to.
This is because modyfing a value the iterator is pointing to could possibly invalidate the internal structure of the unordered multiset,
which could then lead to all kinds of incorrect and unexpected behaviours.
The member type aliases iterator
and const_iterator
may be the same.
This is left entirely to the implementation.
This means that any overloaded functions/specializations differing only in the iterator types may be incorrect and may lead to ODR violation.
Member functions
pub | (constructor) | Constructs a new unordered set. |
pub | (destructor) | Destructs an unordered set. |
pub | operator= | Assigns one unordered set to another. |
pub | get_allocator | Returns an associated allocator. |
Iterators
pub | begin cbegin | Returns an iterator to the beginning. |
pub | end cend | Returns an iterator to the end. |
Capacity
pub | empty | Returns |
pub | size | Returns the number of elements in an unordered set. |
pub | max_size | Returns the maximum possible number of elements. |
Modifiers
pub | clear | Clears the contents of an unordered set. |
pub | insert | Inserts elements (or nodes (extracted with |
pub | emplace | Constructs a new element in place. |
pub | emplace_hint | Constructs elements in-place using a hint (iterator). |
pub | erase | Erases elements. |
pub | swap | Swaps two unordered sets. |
pub | extract (since C++17) | Extracts nodes from an unordered set (can be later inserted somewhere else). |
pub | merge (since C++17) | Merges two unordered sets together. |
Lookup
pub | count | Returns the number of elements matching a specific key. |
pub | find | Searches for an element and returns an iterator to it, or an end iterator if not found. |
pub | contains (since C++20) | Returns |
pub | equal_range | Returns a range of elements matching a specific key. |
Bucket interface
pub | begin (size_type) cbegin (size_type) | Returns an iterator to the beginning of a specified bucket. |
pub | end (size_type) cend (size_type) | Returns an iterator to the end of a specified bucket. |
pub | bucket_count | Returns a number of buckets. |
pub | max_bucket_count | Returns a maximum number of buckets. |
pub | bucket_size | Returns a number of elements in a specific bucket. |
pub | bucket | Returns a bucket for a specific key. |
Hash policy
pub | load_factor | Returns an average number of elements per bucket. |
pub | max_load_factor | Manages a maximum average number of elements per bucket. |
pub | rehash | Reserves at least the specified number of buckets and regenerates the hash table. |
pub | reserve | Reserves space for at least a specified number of elements and regenerates the hash table. |
Observers
pub | hash_function | Returns an internal function object that hashes keys. |
pub | key_eq | Returns an internal function object that compares keys. |
Non-member functions
pub | operator== operator!= (removed in C++20) | Compares values in an unordered_map. |
pub | std::swap (std::unordered_multiset) | An overload for a std::swap algorithm. |
pub | std::erase_if (std::unordered_multiset) (since C++20) | Overload for a std::erase_if algorithm. |
Deduction guides (since C++17)
Click to expand
Deduction guides
// (1)
template< class InputIt, class Alloc >
unordered_multiset( InputIt, InputIt, Alloc )
-> unordered_multiset<iter_key_t<InputIt>, iter_val_t<InputIt>,
std::hash<iter_key_t<InputIt>>,
std::equal_to<iter_key_t<InputIt>>, Alloc>;
// (2)
template< class InputIt, class Hash, class Alloc >
unordered_multiset( InputIt, InputIt, typename /*see below*/::size_type, Hash, Alloc )
-> unordered_multiset<iter_key_t<InputIt>, iter_val_t<InputIt>, Hash,
std::equal_to<iter_key_t<InputIt>>, Alloc>;
// (3)
template< class InputIt, class Alloc >
unordered_multiset( InputIt, InputIt, typename /*see below*/::size_type, Alloc )
-> unordered_multiset<iter_key_t<InputIt>, iter_val_t<InputIt>,
std::hash<iter_key_t<InputIt>>,
std::equal_to<iter_key_t<InputIt>>, Alloc>;
// (4)
template< class InputIt,
class Hash = std::hash<iter_key_t<InputIt>>,
class Pred = std::equal_to<iter_key_t<InputIt>>,
class Alloc = std::allocator<iter_to_alloc_t<InputIt>>>
unordered_multiset( InputIt, InputIt,
typename /*see below*/::size_type = /*see below*/,
Hash = Hash(), Pred = Pred(), Alloc = Alloc() )
-> unordered_multiset<iter_key_t<InputIt>, iter_val_t<InputIt>, Hash, Pred, Alloc>;
(1 - 4)
allow deduction from an iterator range
// (5)
template< class Key, class T, typename Alloc >
unordered_multiset( std::initializer_list<std::pair<Key, T>>, Alloc )
-> unordered_multiset<Key, T, std::hash<Key>, std::equal_to<Key>, Alloc>;
// (6)
template< class Key, class T, class Hash, class Alloc >
unordered_multiset( std::initializer_list<std::pair<Key, T>>,
typename /*see below*/::size_type, Hash, Alloc )
-> unordered_multiset<Key, T, Hash, std::equal_to<Key>, Alloc>;
// (7)
template< class Key, class T, typename Alloc >
unordered_multiset( std::initializer_list<std::pair<Key, T>>,
typename /*see below*/::size_type, Alloc )
-> unordered_multiset<Key, T, std::hash<Key>, std::equal_to<Key>, Alloc>;
// (8)
template< class Key, class T, class Hash = std::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T>> >
unordered_multiset( std::initializer_list<std::pair<Key, T>>,
typename /*see below*/::size_type = /*see below*/,
Hash = Hash(), Pred = Pred(), Alloc = Alloc() )
-> unordered_multiset<Key, T, Hash, Pred, Alloc>;
(5 - 8)
allow deduction from astd::initializer_list
Aliases iter_key_t
, iter_val_t
and iter_to_alloc_t
are defined as if follows:
template< class InputIt >
using iter_key_t = std::remove_const_t<
typename std::iterator_traits<InputIt>::value_type::first_type>;
template< class InputIt >
using iter_val_t = typename std::iterator_traits<InputIt>::value_type::second_type;
template< class InputIt >
using iter_to_alloc_t = std::pair<
std::add_const_t<typename std::iterator_traits<InputIt>::value_type::first_type>,
typename std::iterator_traits<InputIt>::value_type::second_type
>
Note that these aliases aren't guaranteed to be found anywhere in the standard library. They are defined solely for presentation purposes of these deduction guides and weren't present in the standard library at the point of writing of this document.
Overload resolution
In order for any of the deduction guides to participate in overload resolution, the folllowing requirements must be met:
InputIt
satisfiesLegacyInputIterator
Alloc
satisfiesAllocator
Hash
doesn't deduce to an integral type or doesn't satisfyAllocator
Pred
doesn't satisfyAllocator
The extent to which the library determines that a type does not satisfy LegacyInputIterator
is unspecified,
except that as a minimum:
- Integral types do not qualify as input iterators.
Likewise, the extent to which it determines that a type does not satisfy Allocator
is unspecified,
except that as a minimum:
- The member type
Alloc::value_type
must exist. - The expression
std::declval<Alloc&>().allocate(std::size_t{})
must be well-formed when treated as an unevaluated operand.
Hover to see the original license.